

MBG-1603220001020200 Seat No. _____

B. Sc. (Bio-Informatics) (Sem. II) (CBCS) Examination March / April - 2018

Mathematics & Statistics

Time : **2.30** Hours]

[Total Marks: 70

1 (A) Attempt All:

- $4\times1=4$
- (1) Write the distance formula in \mathbb{R}^2 .
- (2) Write the formula for finding an equation of line passing through (x_1, y_1) and having slope m.
- (3) Define: Unit vector.
- (4) Define: Gradient
- (B) Attempt Any One:

 $1\times2=2$

- (1) If $\phi(x, y, z) = x^2y + y^2x + z^2$ then find $grad\phi$.
- (2) If $\overline{x} = (3, -1, 4)$ and $\overline{y} = (1, -2, 3)$ then find $3\overline{x} + \overline{y}$.
- (C) Attempt Any **One**:

 $1 \times 3 = 3$

- (1) If $\overline{x}, \overline{y}, \overline{z} \in R^3$ and $\overline{x} + \overline{y} = \overline{x} + \overline{z}$ then show that $\overline{y} = \overline{z}$.
- (2) Find the equation of the circle with radius a in the first quadrant if it touches both axis.
- (D) Attempt Any One:

 $1 \times 5 = 5$

- (1) Find the equation of line passing through (2,1) and (4,5) and also find the slope.
- (2) If $\overline{f} = x^2 y \hat{i} 2xy \hat{j} + 2yz \hat{k}$ then find $curl \overline{f}$.

2 (A) Attempt All:

 $4\times1=4$

- (1) State Rolle's Theorem.
- (2) Define: Increasing function.
- (3) Define: Function of two variables.
- (4) Find $\frac{\partial^2 f}{\partial y \partial x}$ for $f(x, y) = 2x^2 + 3xy + 8y^2$
- (B) Attempt Any One:

- $1\times2=2$
- (1) Find the Maximum value of the function $f(x) = x^3 12x + 1, x \in [-3, 5]$
- (2) Find the Minimum value of the function $f(x) = 3x^4 16x^3 + 18x^2, x \in [-1, 4]$
- (C) Attempt Any One:

- $1 \times 3 = 3$
- (1) Find $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial x \partial y}$, $\frac{\partial^2 f}{\partial y^2}$, if $f(x, y) = x^3 + 3x^2y^2 + y^3$
- (2) Using Maclaurin's Series expand $f(x) = e^x$
- (D) Attempt Any One:

- $1 \times 5 = 5$
- (1) Verify Lagrange's Theorem where $f(x) = e^x; x \in [0,1]$
- (2) If $f(x) = \sqrt{x}$ expand in powers of (x-4)
- 3 (A) Attempt All:

 $4\times1=4$

- (1) Find $\int \sqrt{x} dx$
- (2) Find $\int \frac{1}{x} dx$
- (3) Find $\int \log_e x \, dx$
- (4) Find $\int \frac{1}{x^2 + a^2} dx$
- MBG-1603220001020200]

$$1\times2=2$$

(1) Find
$$\int \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right) dx$$

(2) Find
$$\int (e^x + x^e + 2^x + x^2) dx$$

(C) Attempt Any One:

$$1 \times 3 = 3$$

(1) Find
$$\int \frac{x^3 - 8}{x - 2} dx$$

(2) Find
$$\int \frac{x^2 + 1}{x + 1} dx$$

$$1 \times 5 = 5$$

(1) Find
$$\int \frac{dx}{x-x^3}$$

(2) Find
$$\int \frac{5x+2}{(x-2)(x-3)} dx$$

4 (A) Attempt All:

$$4 \times 1 = 4$$

- (1) Define correlation analysis.
- (2) What is meant by regression analysis?
- (3) State the uses of regression analysis.
- (4) State the interval for degree of correlation.

(B) Attempt Any One:

$$1\times2=2$$

- (1) Write short note on Types of Correlation.
- (2) Find the correlation coefficient from the following data.

$$\sum x = 200, \ \sum x^2 = 4360, \ \sum y = 250, \ \sum y^2 = 6810, \ \sum xy = 5384, n = 10$$

(C) Attempt Any One:

$$1 \times 3 = 3$$

- (1) Explain the properties of correlation coefficient.
- (2) Find Spearman's rank correlation for the following data.

Fertilizers used	15	18	20	24	30	35	40	50
Productivity	85	93	95	105	120	130	150	160

(D) Attempt Any One:

 $1 \times 5 = 5$

(1) Calculate Karl Pearson's coefficient of correlation.

X	1	2	3	4	5	6	7	8	9	10
T	15	9	7	5	12	13	20	25	23	22

(2) From the following data find out the probable yield when rainfall is 40 cms. Using regression equation:

Rainfall (in cms.) Production (in tons)

Mean 35 50 S.D. 5 8

Coefficient of correlation = 0.8

5 (A) Attempt All:

 $4\times1=4$

- (1) Define mutually exclusive event.
- (2) Define conditional probability.
- (3) Define Exhaustive events.
- (4) Define Sample Space.
- (B) Attempt Any One:

 $1\times2=2$

- (1) Write probability density function of Normal Distribution.
- (2) A card is drawn from a pack of 52 cards. What is the probability that it is either king or spade?
- (C) Attempt Any One:

 $1 \times 3 = 3$

- (1) State multiplication theorem of probability.
- (2) A husband and wife appear in an interview for two vacancies in the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is probability that only one of them will be selected?
- (D) Attempt Any One:

 $1 \times 5 = 5$

(1) Calculate the expected value of x from the following probability distribution.

(2) State and prove addition theorem of probability.